Загадка числа ПИ
В каждой книге по занимательной математике вы непременно найдете историю вычисления и уточнения значения числа «пи». Сначала, в древних Китае, Египте, Вавилоне и Греции для расчетов использовали дроби, например, 22/7 или 49/16. В Средние века и Эпоху Возрождения европейские, индийские и арабские математики уточнили значение «пи» до 40 знаков после десятичной точки, а к началу Эпохи Компьютеров усилиями многих энтузиастов количество знаков было доведено до 500. Такая точность имеет чисто научный интерес (об этом ниже), для практики, в пределах Земли достаточно 11 знаков после точки. Тогда, зная, что радиус Земли равен 6400 км или 6,4*1012 миллиметров, получится, что мы, отбросив двенадцатую цифру «пи» после точки при вычислении длины меридиана, ошибемся на несколько миллиметров. А при расчете длины Земной орбиты при вращении вокруг Солнца (как известно, R150*106 км 1,5*1014 мм) для такой же точности достаточно использовать «пи» с четырнадцатью знаками после точки. Среднее расстояние от Солнца до Плутона — самой далекой планеты Солнечной системы — в 40 раз больше среднего расстояния от Земли до Солнца. Для вычисления длины орбиты Плутона с ошибкой в несколько миллиметров достаточно шестнадцати знаков «пи». Да что уж там мелочиться — диаметр нашей Галактики около 100.000 световых лет (1 световой год примерно равен 1013 км) или 1018 км или 1030 мм., а еще в XXVII веке были получены 34 знака «пи», избыточные для таких расстояний. В чем же сложность вычисления значения «пи»? Дело в том, что оно не только иррациональное (то есть его нельзя выразить в виде дроби P/Q, где P и Q целые числа), но оно еще не может быть корнем алгебраического уравнения. Есть ли у этого числа какая-то внутренняя структура, неизвестная закономерность? Узнать это хотели многие. Известно, что в 19-м веке англичанин Вильям Шенкс, потратив 20 лет, вычислил Пи до 707 знака, однако он так и не узнал, что в 520-м знаке допустил ошибку и все последние годы вычислений оказались напрасны (в итерационных алгоритмах хоть одна ошибка делает все дальнейшие шаги бесполезными).Разумеется, с появлением компьютеров изучение числа Пи пошло на порядки быстрее. В 1949 году на компьютере ЭНИАК было вычислено 2000 знаков числа, на что ушло 70 часов (для сравнения, современный iPhone вычисляет 100 000 знаков Пи за 10 минут). Рубеж в миллион знаков был преодолен в 1973 году. Существуют различные методы, например, алгоритм Рамануджана, алгоритм Брента-Саламина, формула Плаффа и многие другие. На сегодняшний день число Пи вычислено с точностью 10 триллионов цифр после запятой. Для чего это делается? Во-первых, это просто интересно (и отчасти похоже на спорт), во-вторых, вероятно, ученые не оставляют надежды найти какие-то новые закономерности. Например, посмотрим на первую тысячу знаков числа Пи (удивительно, но на получение этого короткого набора строк у человечества ушло 3000 лет) Последовательность цифр похожа на случайную, однако могут ли в ней быть повторяющиеся цифры? Оказывается, да, на 762 знаке находится так называемая «точка Фейнмана», состоящая из чисел 999 999. Весьма интересно поискать в этом тексте какие-то числа. Так например, в 4 000 000 знаков Пи можно найти все 6-значные последовательности «111 111», «222 222»,. «999 999». На примерно 40-миллионом знаке можно найти дату начала 2-й мировой войны (22 061 941), а на 70-миллионном — дату ее окончания (9 081 945). Есть также годы существования СССР (19 171 991). Можно поискать и свой день рождения (наверно, есть и день смерти, но заранее мы это не узнаем). Есть даже шутка о том, что в числе Пи сохранены все знания мира, их надо только уметь найти. Можно точно сказать, что история изучения числа Пи еще не закончена и, исходя из природы этого числа, не будет закончена никогда. Желающие могут изучить этот вопрос самостоятельно. Кстати, если сопоставить каждой цифре 0.9 ноту, то число Пи можно представить и в виде набора звуков. Некоторые музыканты делали мелодии и аранжировки на эту тему, желающие могут поискать их в youtube. Обладатели хорошей памяти тренируются в запоминании числа Пи, известны люди, помнящие несколько тысяч знаков.